Επιδράσεις των κλιματικών αλλαγών σε γεωργικές καλλιέργειες, φυτοφάγα αρθρόποδα και στους φυσικούς τους εχθρούς

Vassilis LITSKAS, Alain MIGEON, Marie-Stéphane TIXIER, Maria NAVAJAS, Menelaos C. STAVRINIDES

The planet is warming

Land use and observed climate change

A. Observed temperature change relative to 1850-1900

Since the pre-industrial period (1850-1900) the observed mean land surface air temperature has risen considerably more than the global mean surface (land and ocean) temperature (GMST).

CHANGE in TEMPERATURE rel. to 1850-1900 (°C)

B. GHG emissions

An estimated 23% of total anthropogenic greenhouse gas emissions (2007-2016) derive from Agriculture, Forestry and Other Land Use (AFOLU).

CHANGE in EMISSIONS since 1961

- 1 Net CO2 emissions from FOLU (GtCO2 yr1)
- 2 CH₄ emissions from Agriculture (GtCO₂eq yr¹)
- 3 N₂O emissions from Agriculture (GtCO₂eq yr¹)

GtCO2eq yr1

Resources are limited

We use, produce, eat and destroy more...

CHANGE in % rel. to 1961

- 1 Inorganic N fertiliser use
- 2 Cereal yields
- 3 Irrigation water volume
- 4 Total number of ruminant livestock

E. Food demand

Increases in production are linked to consumption changes.

CHANGE in % rel. to 1961 and 1975

- 1 Population
- 2 Prevalence of overweight + obese
- 3 Total calories per capita
- 4 Prevalence of underweight

F. Desertification and land degradation

Land-use change, land-use intensification and climate change have contributed to desertification and land degradation.

CHANGE in % rel. to 1961 and 1970

- 1 Population in areas experiencing desertification
- 2 Dryland areas in drought annually
- 3 Inland wetland extent

Expected impacts increase with temperature

Our corner of the world will experience severe impacts

Climate change and agriculture

- Climate change (CC) impacts global agricultural production (e.g. Fleisher et al., 2017; Yoon et al., 2019; Moat et al., 2019)
- Considerable effort on exploring CC risks on stable crops
- Vegetables, pests, natural enemies underrepresented in the literature (Porter et al., 2017, Savary et al. 2019)
- Substantial interest in evaluating impacts of 1.5 °C warming on agricultural systems – IPCC special report, Hoegh-Guldberg et al. 2019

Tomato

• Highest value fruit-vegetable in the world,

• Annual value of over 90 billion USD (FAOSTAT 2016).

• 5 million ha in 2015,

• 166 million tonnes per year (FAO 2017).

 Outdoor tomato production faces a potential risk from climate change – worst case scenaria (Saadi et al. 2015; Silva et al. 2017)

Two-spotted spider mite (*Tetranychus urticae*)

- A pest of major importance globally, for more than 200 species of crops (Migeon and Dorkeld 2015)
- Highly resistant to pesticides (more than 90 active ingredients APRD, 2019)
- \$400 million annually for pesticides alone (van Leeuwen et al., 2015)

T. urticae: female, male (left) eggs and a larva (right)

Predatory mite Phytoseiulus persimilis

- Among first examples of successful biological control (Knapp et al., 2018)
- Among most widely used natural enemies
- Mediterranean origin, natural populations in several parts of the world

P. persimilis: adult and egg (left) - larva (right)

Study aims

 Develop a global bioclimatic niche model for tomato, the two-spotted spider mite, and P. persimilis

• Evaluate the effects of CC by 2050 on the three species for all global areas equipped with irrigation facilities (AEI)

Validate the models using outdoor experiments and a farmer survey

Methods

Evaluating CC impacts on agricultural crops and their pests

- **Bioclimatic envelope models:** Based on species presence and climatic conditions in a specific area.
- Climex model (Suthrest et al. 2015). Used for several species of agricultural importance, including crops and pests/pathogens

Presence and climate data

Mites

- T. urticae Spider Mites Web (Migeon and Dorkeld 2006-2015).
- P. persimilis Literature and personal records (INRA Tixier, Migeon).
- Tomato (field crops).
- GBIF (Global Biodiversity Information Facility)

- General Circulation Model (GCM)
- A1B in CSIRO-MK3.0 (CSIRO, Australia) 1.61 °C increase by 2050 relative to pre-industrial levels, Paris agreement relevant.
- CliMond (Kriticos et al. 2012) at a 10 arcminutes global data grid (18.5 x 18.5 km).

Spatial mapping

• FAO Global Map of Irrigation Areas v.5 - 5 arc minute (Salmon et al., 2015)

• Software: R (v. 3.4.0) – libraries raster and rgdal QGIS v.2.18.5

Results

Suitability of land for tomato production decreases in Asia-Africa and improves at northern latitudes

1975H: 80% of AEI. By 2050 -> Loss: 18%, Worse: 16%, Same: 54%, Better: 17%, Gain: 4%

Worst affected nations: Africa and Asia

Two-spotted spider mite: Northward expansion, increase in suitability of land (with exceptions)

1975H: 95% of AEI. By 2050 -> Loss: 4%, Worse: 16%, Same: 57%, Better: 17%, Gain: 2.0%

P. persimilis: Land loss and substantial worsening of land suitability

1975H: 56% of AEI. By 2050 -> Loss: 10%, Worse: 7%, Same: 25%, Better: 14%, Gain:5%

CC expected to disrupt biological control

Synthesis: Impacts on biol. control more severe on areas suitable for tomato cultivation

Model validation

Validation of model through outdoor experiments

- Tomato plants alone
- Tomato plants with twospotted spider mite
- Tomato plants with twospotted spider mite and P. persimilis
- 2016 and 2017

- Plants infested in the laboratory and transferred to outdoor locations for six days
- Watered daily based on evapotranspiration losses

Plant and population growth parameters

Relative Growth Rate

$$RGR = \frac{In(final plant above ground biomass) - In(initial plant above ground biomass)}{Plant duration at field site}$$

(Pattison and Mack 2008; Global Change Biology)

Instantaneous rate of increase:
$$r = \left[\ln \left(\frac{N_{Final}}{N_{Initial}} \right) \right] / t$$

Where: N_{Final} is the population of all stages of mites after 6 days and $N_{Initial}$ is the initial population (=20 females) (Stavrinides and Mills, 2009).

Significant relationship between model results and field growth for tomato

Significant relationship between model results and field observations for the two-spotted spider mite and *P. persimilis*

Validation of model results through a farmer survey

- 80 farmers in main agricultural areas of Cyprus
- Asked to rank two-spotted spider mite infestation severity from 1 to 5
- Used bioclim data centered on 1985 (1 km grid resolution) for Cyprus to obtain climate favorability for the pest from the CLIMEX model
- Evaluated relationship between model predictions and farmer responses using one-way ANOVA.

Significant relationship between farmer perception on two-spotted spider mite infestation severity and model predictions

Ranking of infestation severity (low to high) (F = 399.21; df = 1,78; P < 0.001)

Conclusions

- Unfavorable effects of CC on tomato, especially for nations in Africa and Asia (adaptation efforts more complicated)
- Favorable impacts at northern latitudes
- CC expected to disrupt biological control on ca. 10% of land suitable for tomato production
- Work needs to focus on identifying heat and drought resistant tomato varieties (e.g. Ximenez-Embun et al., 2017) and natural enemies adapted to the changing climate

Future work

- Use of ensemble models from AR5 to evaluate CC impacts on pest-natural enemy complex of key crops
- Link model results to observed change in management practices, e.g. pesticide use
- Identify natural enemies potentially effective under CC conditions
- Building strong collaborations a prerequisite for this type of research

Acknowledgements

GENOMITE: An ERANET+ FACCE project

Seven EU partners

One associate partner

Supported by

